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Abstract 

Finite element analysis of soft tissues is a well-developed method that allows estimation of mechanical 

quantities (e.g. stresses, strains). A constitutive law has to be used to characterise the individual tissues. This is 

complex as biological tissues are generally visco-hyperelastic, anisotropic, and heterogenous. A specific 

characteristic, their nearly incompressibility, was well reported in the literature, but very little effort has been made 

to compare volume variations computed by the simulations with in vivo measurements. In the present study, 

volume changes of the fat pad during controlled indentations of the human heel region were estimated from 

segmented medical images using digital volume correlation. Indentations were repeated with high and mild 

intensity normal and shear loads. The experiment was reproduced using finite element modelling with several 

values of Poisson’s ratio for the fat pad, extracted from literature values (from 0.4500 to 0.4999). Estimated fat 

pad volume changes were compared to the measured ones to assess the best value of Poisson’s ratio in each 

indentation case. The impact of the Poisson’s ratio on the Jacobian of the deformation gradient and the volumetric 

strains was also computed. A single value of Poisson’s ratio could not fit all the indentation cases. Estimated 

volume changes were between 0.9 % - 11.7 % with a Poisson’s ratio from 0.4500 to 0.4999. The best fit was 

obtained with a 0.4900 Poisson’s ratio except for the high normal load where a value of 0.4999 resulted in less 

error. In conclusion, special care should be taken when setting the Poisson’s ratio as the resulting estimated 

deformations may become unrealistic when the value is far from incompressible materials. 

Word count: 248 
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1. Introduction 

Soft tissues are complex mechanical entities that connect, protect and support the human body 

(Holzapfel, 2000). They are composed of cells separated by the extracellular matrix and, at the 

microscopic scale, they can be described as a fibre-reinforced composite material constituted mainly by 

collagen and elastin proteins. The term “soft” refers to their high flexibility and their ability to undergo 

large deformations. They are heterogeneous and exhibit non-linear hyperelastic anisotropic behaviour 

(Fung, 1967). Furthermore, the response of soft tissues to external loads depends on the strain rate 

(Gennisson et al., 2010). Due to their high water content, soft tissues are considered as nearly-

incompressible meaning that there is little volume change when they are submitted to external loads.  

Understanding the deformations of soft tissues is crucial in most clinical practices: tumour 

growth analysis (Iranmanesh and Nazari, 2017), tissue arrangement in the prosthetic socket (Moerman, 

Herr and Sengeh, 2016; Fougeron, Rohan, et al., 2022), weight-bearing areas for pressure ulcer 

prevention (Ceelen, Stekelenburg, Mulders, et al., 2008; Macron et al., 2019; Peko, Barakat-Johnson 

and Gefen, 2020; Fougeron, Connesson, et al., 2022). For that purpose, numerical methods, such as 

Finite Element (FE) analysis, have been developed for surgical planning, patient monitoring or 

orthopaedic device design. Constitutive laws were created to describe the intricate behaviour of soft 

tissues with material properties that could be tuned to fit subject-specific data. In vivo, studies have used 

imaging (Gefen et al., 2001; Gennisson et al., 2010), indentations (Zheng and Mak, 1996; Lin et al., 

2004; Sengeh, 2016), or both techniques (Affagard, Bensamoun and Feissel, 2014; Fougeron et al., 

2020) to quantify the material properties of the tissue. Indentation and inverse FE analysis could be 

applied to estimate material parameters for the soft tissues. Yet, these parameters may be biased by the 

simplifications of the indentation in the modelling process (Zhang, Zheng and Mak, 1997; Spears and 

Miller-Young, 2006). Besides the inherent difficulties associated with the process of material parameter 

identification, a limitation of most FE models is the lack of personalised data regarding the 

compressibility of the soft tissues. Soft tissues are mostly modelled nearly incompressible, whereas fluid 

exchanges occur in the human body (Swartz and Fleury, 2007). To what extent these fluid exchanges 

affect the nearly-incompressibility of soft tissues is still an open question. Mixed pressure-displacement 
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formulation implemented in most FE software can be used to find a numerical solution when materials 

tend to be incompressible. In this case, the strain energy density is the combination of an isochoric part, 

that transcripts the transformation at constant volume, and the volumetric part which depends on the 

Jacobian of the deformation gradient and the initial bulk modulus of the materials to reflect the volume 

changes (Doll and Schweizerhof, 2000). The bulk modulus is a mechanical parameter that reflects the 

soft tissues’ nearly-incompressibility. It can be expressed with the initial shear modulus or Young’s 

modulus and Poisson’s ratio; however, the latter is tedious to measure in vivo. It follows that the 

Poisson’s ratio implemented in FE models extends to a wide range of values, going from 0.4500 to 

0.4950 (Dickinson, Steer and Worsley, 2017; Keenan, Evans and Oomens, 2021). Some authors 

suggested considering the bulk-to-shear modulus ratio to quantify the level of incompressibility of 

hyperelastic materials,(Love, 1892; Bonet and Wood, 2008). Suggested values of at least 103 were 

recommended for isotropic incompressible materials. However, considering living tissues, and more 

particularly the arterial wall, (Toungara, Chagnon and Geindreau, 2012) have shown that for anisotropic 

hyperelastic polynomial models, this ratio should be superior to 106, but data are still lacking for living 

tissues. This recommendation is not followed in the literature studies, and the impact of how the level 

of incompressibility of the soft tissues affects the models’ results has been poorly investigated. Vannah 

et al. (Vannah and Childress, 1993) computed von Mises stresses and reaction force in a model of the 

contained residual limb of an above-knee amputated subject. Toungara et al. (Toungara, Chagnon and 

Geindreau, 2012) also investigated the first principal stress and the Jacobian of the deformation gradient 

of the arterial wall. Both authors concluded that changes in the Poisson ratio induced non-negligible 

changes in the computation of stresses. To the best of the authors' knowledge, no attempt has been made 

to evaluate this impact on soft tissue strains which are also an important mechanical quantity in many 

clinical fields. Pressure ulcers, for example, are well-known soft tissue injuries that are tedious to heal 

and negatively impact the physical but also mental health of the patients (Demarré et al., 2015). This 

type of injury mainly occurs under bony prominences such as the sacrum and the heel regions and has 

been correlated to the shear strains in soft tissues (Ceelen, Stekelenburg, Loerakker, et al., 2008). In 

addition, the level of incompressibility of living soft tissues is still required to be estimated from in vivo 

measurements. 
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This study aims to draw attention to the important impact of the Poisson’ratio on the mechanical 

response of soft tissues to external loading. The authors assumed that low Poisson’s ratio, lower than 

0.4900, cannot be representative of the nearly incompressibility of the soft tissues. In this study, 

Magnetic Resonance Imaging (MRI) were used to compute the changes in the volume of the soft tissues 

from Digital Volume Correlation (DVC). The foot was loaded with both normal and shear forces, with 

mild to high intensities, to analyze the resulting volume changes of the soft tissues in the fat pad. 

Indentations were reproduced in FE analysis of the heel region with several Poisson’s ratios from 0.4500 

to 0.4999. Volume changes, Jacobian, and volumetric strains in the fat pad were computed for all values 

of Poisson’s ratio. 

 



 

      

2. Material and methods 

2.1.  Experimental acquisition and processing 

 MRI acquisitions 

Data were extracted from a previous work. For further information, the reader is invited to refer 

to the paper of Trebbi et al. 2021 (Trebbi et al., 2021). A healthy volunteer (male, 40 years old) gave 

his informed consent to participate in the experimental part of a pilot study approved by an ethical 

committee (MammoBio MAP-VS pilot study N°ID RCB 2012-A00310-43, IRMaGe platform, Univ. 

Grenoble Alpes). A proton density MR was used to collect 512 consecutive 0.3 mm thick sagittal slices 

(Philips Achieva 3.0T dStream MRI system). Each slice had a field of view of 160.0 × 160.0 mm and a 

resolution of 512 × 428 for a total scanning time of 7 minutes. The right foot, in the supine position, was 

inserted into a compression device and fixed inside the foot casing. Five loading configurations, named 

from LOAD0 to LOAD4, were chosen to capture the non-linear mechanical properties of the soft tissues, 

and applied with the indenter. The complete protocol is presented in Figure 1. The displacements and 

reaction forces applied by the indenter, which consisted of a rigid plate, are detailed in Table 3. A double 

face tape was applied on the plate surface to allow the application of the shearing load without any 

slipping. 

Figure 1 around here 

 

 Image segmentation and soft tissue volume changes 

The MRI acquisitions were analysed using Amira (Amira Avizo 6.4, Thermos Fisher Scientific, 

Waltham, Massachusetts, United States). Only the acquisition in the undeformed configuration was 

manually segmented. The segmentation included the calcaneus, fat pad, Achilles tendon, muscle, skin 

and remaining bones and tissues. Due to the field of view of the MRI, only the calcaneus and the fat pad 

could be entirely segmented as shown in Figure 2. The volume of the fat pad, in the unloaded 

configuration, was calculated by multiplying the volume of one voxel by the number of voxels 

composing the segmented region. To compute the volume of the fat pad in the loaded configurations, 



 

      

the segmentation of the unloaded region was morphed to the loaded configuration using DVC through 

image registration. First, a rigid registration based on the calcaneus rotations and translations was 

performed to align all 3D images using Elastix libraries (Klein et al., 2010) with a custom MATLAB 

code (MATLAB R2019b The MathWorks, Inc., Natick, Massachusetts, United States). This was 

followed by a non-rigid registration performed based on the computation of the normalised correlation 

coefficient, as the similarity measure between images, with the unloaded configuration set as the 

reference. Again, volumes of the fat pad in the loaded configurations were computed from the resulting 

segmentation by multiplying the number of voxels in the segmented volume by the volume of one voxel. 

Detailed procedure and accuracy analysis of this registration process have been proposed by (Trebbi et 

al., 2022). The accuracy of the volumes was mainly characterized by the spatial resolution of the MRI 

0.3 mm3. 

Figure 2 around here 

 

2.2. FE ANALYSIS 

 Geometry 

The segmented unloaded images were used to build the model of the foot which was composed 

of skin, fat pad, muscle and bones. The soft tissues of the upper part of the heel region and the bones 

were fused and were subsequently named the ‘bony structure’. The bony structure was removed from 

the model as this component would be considered a rigid body in the analysis. No sliding was allowed 

at the tissues’ interfaces. All components were meshed using PyAnsys (Kaszynski, 2021), used as an 

interface for ANSYS APDL (ANSYS 2020 R2 software, ANSYS Inc., Cannonsburg, PA, USA), with 

linear tetrahedron (SOLID285) with a mixed hydrostatic pressure and linear displacement formulation 

to avoid volumetric locking. A mesh convergence study was performed and eventually, a total of 

296,408 degrees of freedom and 263,071 elements comprised the model (see Figure 2). 

 Material properties 

Material parameters of all soft tissues were obtained from curve fitting of literature experimental 

data using MATLAB. The skin was modelled with the equation proposed by (Isihara, Hashitsume and 



 

      

Tatibana, 1951) which is equivalent to the equation proposed by (Yeoh, 1990) with the parameter C30 

equals to zero, see equation 1. This model was fitted on the experimental data of (Ní Annaidh et al., 

2012) who did uniaxial tensile tests on skin samples. The fat pad layer was modelled with an Ogden 1st-

order law (Ogden, 1972), see equation 2, and parameters were obtained from the compression tests 

performed (Miller-Young, Duncan and Baroud, 2002). Tendon and muscle tissues were both modelled 

with the equation proposed by Yeoh (1993), see equation 1. Tendon parameters were fitted according 

to the tensile test data published by Obuchowicz et al., (2019) whereas muscle parameters were fitted 

according to the tensile test data published by Gras et al. (2012). Material parameters of the soft tissues 

are summarised in Table 1. 

Table 1 around here 

 

Constitutive equations are provided below: 

(1) 𝑊𝑊 = ∑ 𝐶𝐶𝑖𝑖0(𝐼𝐼1� − 3)𝑖𝑖 +𝑛𝑛
𝑖𝑖=1 ∑ 1
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(𝐽𝐽 − 1)2𝑙𝑙𝑛𝑛
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𝛼𝛼1

(𝜆𝜆1���
𝛼𝛼1 + 𝜆𝜆2���
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𝑑𝑑
(𝐽𝐽 − 1)2 

(3) 𝑑𝑑 = 2
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with W the strain energy density function, 𝐶𝐶𝑖𝑖0, 𝜇𝜇1  and 𝛼𝛼1  are material parameters,  𝐼𝐼1�  the first 

deviatoric invariant of the right Cauchy-Green deformation tensor, 𝜆𝜆𝚤𝚤�  the principal stretches, J the 

Jacobian, 𝑑𝑑 the incompressibility parameters and κ the bulk modulus. Incompressibility parameters were 

computed for various Poisson’s ratio values from the equation of (Mott, Dorgan and Roland, 2008) and 

are provided in Table 2. The values chosen were the most represented in the literature (Keenan, Evans 

and Oomens, 2021). A value of Poisson’s ratio of 0.4999 was added to have a value above the 

incompressibility limit provided by (Bonet and Wood, 2008). In total, five models were constructed, 

one for each Poisson’s ratio and the same Poisson’s ratio was given to all tissues in each model. 

 

Table 2 around here 

 

  



 

      

 Boundary conditions 

No sliding was allowed between the skin and the plate due to the presence of tape during the 

experiments. The frontier with the bone was defined as rigid and was fixed in the simulation. Normal 

and shearing loads of LOAD1 to LOAD4 were applied to all models. Maximal values of normal and 

shear loads were equivalent to 15 % and 5 % of the subject body weight respectively. These values were 

chosen to capture the non-linear hyperelastic behaviour of the tissues without inducing pain in the 

subject. A step was defined to apply a vertical displacement of 10.0 mm to the plate to ensure contact 

with the soft tissues. Then, a second analysis step was created to apply the vertical force on the plate. 

When needed, a third step was added to remove the displacement constraints on the horizontal 

displacement of the plate and to apply the shearing load. Eventually, simulations were launched in quasi-

static analysis using an implicit scheme. Loading details are provided in Table 3. 

  



 

      

3. Results 

3.1.  Plate displacement 

The displacement of the plate measured during the experiment was compared to the computed 

displacement of all models (detailed in Table 3). Differences are noticeable between the experimental 

measurements and the computed values. Vertical displacements are similar for all models and 

overestimate the indenter displacements. Horizontal displacements tend to be underestimated by the 

models. Except for LOAD 1 where errors were up to 5.1 mm, plate displacement errors were below 2.7 

mm. 

Table 3 around here 

 

3.2. Changes in soft tissues’ volume 

Experimental volume changes in the fat pad were computed from the absolute difference 

between the sum of the volume of the voxels in the deformed segmentations and the undeformed 

configuration and plotted in Figure 3. Numerical volume changes in the fat pad were computed from the 

absolute difference between the sum of the volume of the elements at the last step of the simulation and 

in the undeformed configuration. Volume changes were reported as a percentage of the volume 

computed in the undeformed configuration. Fat pad’s volume changes were between 0.2 and 11.7 %. 

The range of volume changes was comprised in [0.9; 11.7] for LOAD 1, in [0.2; 1.9] for LOAD 2, in 

[0.4; 3.5] for LOAD 3 and in [0.2; 2.3] for LOAD 4. The higher the load intensity the higher the impact 

of the Poisson’s ratio for both normal and shear loads. In this particular case, the Poisson’s ratio 𝛎𝛎 = 

0.4900 provided the best fit of the fat pad’s volume change except for LOAD 1 for which the Poisson’s 

ratio 𝛎𝛎 = 0.4999 gave the best results. 

 

Figure 3 around here 

 

 



 

      

3.3. Jacobian and soft tissue compressibility 

Considering a 1st-order Ogden constitutive equation, the ratio of the bulk-to-tangent shear 

modulus was computed from the fat pad's stress-strain curves. As illustrated by Figure 4, only the model 

with a Poisson’s ratio 𝛎𝛎 = 0.4999 when the stretch ratio is above 0.66 (which is equivalent to a decrease 

of less than 33 % of the element in the compression direction) could be defined as incompressible with 

regard to the bulk-to-shear ratio threshold proposed by Bonet and Wood (Bonet and Wood, 2008). 

However, as expected, the median value of the Jacobian was 1.00 for all models and in high load cases, 

LOAD 1 and LOAD 3, the interquartile range decreased when the Poisson ratio increased. Figure 5 

shows the boxplots of the soft tissues’ Jacobian without outliers for clarity since the interquartile ranges 

were very low. 

Figure 4 around here 

 

Figure 5 around here 

 

 

3.4. Volumetric strains 

To highlight the impact of Poisson’s ratio on some mechanical data of interest, the volumetric 

strains of the fat pad were computed for all models. Absolute values of mean and maximal values are 

provided in Table 4. The impact of the Poisson’s ratio is very small at low loads, yet maximal volumetric 

strains decreased by 16 % and 18 % for LOAD 1 (high normal load) and LOAD 3 (high shear load) 

respectively. Evaluation of the computed strains was proposed in a previous study (Trebbi, Fougeron 

and Payan, 2023). 

 

Table 4 around here 

 



 

12 
 

4. Discussion 

The modelling of soft tissues in interacting with medical devices is an important field of research 

and has many applications in the clinical field. Yet, the numerical analysis of this interaction requires a 

correct definition of the soft tissues’ response to external loads. The mechanical characterisation of soft 

tissues is challenging due to their highly complex behaviour under large displacement, which varies 

considerably per person. Many researchers have proposed ex vivo and in vivo methods for the estimation 

of the material properties of soft tissues. However, the bulk modulus has received little attention in the 

literature until now. The nearly-incompressibility of the soft tissues is accepted but there is no consensus 

on the corresponding bulk modulus, usually transcripted in terms of Poisson’s ratio, to be implemented 

numerically. In this study, we wanted to highlight the impact of the bulk modulus on the volume changes 

of the fat pad of the heel region in FE models. These models were evaluated regarding strain prediction 

in a previous study (Trebbi, Fougeron and Payan, 2023). Soft tissues are mostly modelled nearly-

incompressible, whereas fluid exchanges occur in the human body. The numerical predictions of volume 

changes were compared with experimental results obtained from DVC on MRI data. The material 

properties of the soft tissues were inferred from mechanical tests of the literature. To ease the 

interpretation and comparison with models of the literature, the results were expressed with the 

Poisson’s ratio. The Poisson’s ratio varied between 𝝂𝝂 = 0.4500 and 𝝂𝝂 = 0.4950 since these values are 

the most commonly found in models (Dickinson, Steer and Worsley, 2017; Keenan, Evans and Oomens, 

2021). The value 𝝂𝝂 = 0.4999 was added to have at least one bulk-to-shear modulus ratio above the 

incompressibility threshold described by Bonet and Wood (Bonet and Wood, 2008). 

The results from this study showed that the values of the Poisson’s ratio affected the volume 

changes of the fat pad since in all cases decreasing the Poisson’s ratio induced an increase in the volume 

changes. A change of the Poisson’s ratio from 𝝂𝝂 = 0.4500 to 𝝂𝝂 = 0.4999 induced a multiplication by a 

factor between 9 and 11 of the volume changes for all loads. This can be explained by the changes in 

the Jacobian. In the current study, this Jacobian was more spread for low values of the Poisson’s ratio. 

As the Poisson’s ratio increased the median of the Jacobian became closer to one, thus, as expected, 

tissues were less compressible (Doll and Schweizerhof, 2000). This impact was also visible in the values 
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of the volumetric strains for which the increase of the Poisson’s ratio led to a decrease of 16 % and 18 

% of the maximal volumetric strain when high loads were applied to the heel region. Vannah et al. 

(Vannah and Childress, 1993) estimated the impact of the Poisson’s ratio on the reaction force applied 

to the residual limb inside the prosthetic socket and on the soft tissues’ von Mises stresses. Considering 

a linear elastic behaviour for the soft tissues, the authors showed that increasing the Poisson’s ratio from 

𝝂𝝂 = 0.4500 to 𝝂𝝂 = 0.4999 increased by 46.7 N of the reaction force. Von Mises stresses also increased 

from 0.12 to 0.66. Although a direct comparison cannot be made, the increase in stress observed by 

Vannah et al. agrees with the reduction in strain shown by the current study. Toungara et al. (Toungara, 

Chagnon and Geindreau, 2012) also study the impacts of the incompressibility hypothesis on the stress 

state of the arterial wall. The authors showed that increasing the Poisson’s ratio from 𝝂𝝂 = 0.49000 to 𝝂𝝂 

= 0.49999 resulted in an increase of the maximal first principal stress by 78 %. The authors also pointed 

out that even with high Poisson’s ratios the incompressibility hypothesis is verified only until a given 

level of deformation depending on the constitutive equation. This is concurrent with the conclusion of 

the current study’s bulk-to-tangent shear modulus ratio analysis. Only the model with the highest 

Poisson’s ratio, 𝛎𝛎 = 0.4999, when the stretch ratio is above 0.66 could be considered incompressible 

based on the threshold provided by Bonet and Wood (Bonet and Wood, 2008). The impact of the 

Poisson’s ratio on the previously detailed data was particularly visible at high normal and shear loads. 

This was also reported by Toungara et al. who showed that discrepancies between models with different 

Poisson’s ratios were increasing with increasing first principal strains (Toungara, Chagnon and 

Geindreau, 2012). 

Limitations of this study have to be reported. First, the material parameters of the soft tissues 

were estimated only on the isochoric part of the strain energy function and with generic mechanical 

tests. Consequently, the material parameters given in this study were not subject-specific and not 

affected by the changes in Poisson’s ratio values. However, this study aimed to provide relative 

quantitative insights into the assumption of soft tissues’ incompressibility. Thus subject-specific data 

were not required in this case. Constitutive behaviours defined from in vivo indentation tests were not 

used in the current study since these results may be biased by the modelling simplifications and the 

resulting identifiability parameter set may not be satisfying (Oddes and Solav, 2023). Further work will 
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seek to address subject-specific material parameters, bulk modulus included, from inverse FE using MRI 

data such as tissue displacement and strain fields (Trebbi et al., 2022) and soft-tissue volume changes. 

It is also worth noting that even though plate displacement errors are small, they still accounted for 12 

% to 61 % of the experimental data, with the most important relative errors for low-intensity loads. 

These errors may also be explained by the fact that material parameters, bulk modulus included, were 

not subject-specific. In addition, Poisson’s ratio values, used to compute the bulk modulus, were 

identical for all tissues whereas nothing guaranteed that one bulk modulus could be suitable for all 

tissues. Yet, compared to the MRI data the Poisson’s ratio 𝝂𝝂 = 0.4900 provided satisfying results in 

terms of the volume changes of the fat pad, except for high normal loads where a Poisson’s ratio 𝝂𝝂 = 

0.4999 provided better results. This may be revealing of the weakness of solid monophysical FE models 

when it comes to the modelling of living soft tissues. Some studies have investigated the implementation 

of biphasic models (Miller, 1998; Sassaroli, O’Neill and Li, 2008; Sciumè et al., 2014). Biphasic models 

can be used to model interstitial fluids in porous soft tissues but also account for the time-dependent 

response of the tissues. However, the rise in model complexity that requires additional material 

parameters, often tedious to assess in vivo, is an important obstacle to the spreading of this approach. 

The visco-hyperelastic material parameters were also neglected in this work. The indenter position was 

maintained for 5 seconds to limit the error due to the creep of the tissues (Trebbi et al., 2021). Further 

work should be performed to assess the impact of the tissues' Poisson’s ratio when the duration of the 

load is also considered.  

Considering solid models of soft tissues, particular care should be taken when defining the 

material properties including the bulk modulus. Strains are an important mechanical quantity in many 

clinical applications such as the study of the onset of pressure ulcers. In addition, diseases or soft tissue 

injuries such as pressure ulcers may locally impact the incompressibility behaviour of the tissues. The 

current study focuses on the heel region, yet, many models of the sacrum, ischial tuberosities or face 

regions are also proposed in our group and the literature (Luboz et al., 2014; Al-Dirini et al., 2016; Levy 

and Gefen, 2017; Savonnet, Wang and Duprey, 2018; Macron et al., 2019). It is worth noting that 

material parameters are specific to the region of interest (Zhang, Zheng and Mak, 1997); this is 

particularly important with regard to the Poisson’s ratio. The impact of the bulk modulus on these strains 
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was clear at high loads and it is not uncommon to have important loads applied to soft tissues in clinical 

fields. The bulk modulus could be validated using medical image analyses such as DVC or should at 

least be included in a sensitivity analysis to assess the confidence domain of the FE results. 
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8. List of Figures 

Figure 1 Experimental MRI acquisitions of the foot in various loading configurations (from 

Trebbi et al., [29]) 

Figure 2 MRI image of the unloaded configuration (a), LOAD 0, and the resulting segmented 

image (b). Segmented volumes were meshed to define the finite element model (c). 

Figure 3 Comparison of the soft tissues volume changes computed from experimental data and 

the finite element model for all Poisson ratios. 

Figure 4 Bulk-to-tangent shear modulus values for the fat pad for all Poisson’s ratio values. (b) 

Zoomed bulk-to-tangent shear modulus curve. The red dot line represents the 

incompressibility threshold value proposed by Bonet and Wood. 

Figure 5 Fat pad’s Jacobian in all loading conditions for all Poisson’s ratio values. 
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9. List of Tables 

Table 1 Material properties of the soft tissues obtained from literature experimental data. 

Table 2 Values of Poisson ratio and equivalent bulk modulus and bulk-to-shear ratio. 

Table 3 Normal and shearing loads of all studied configurations and measured and computed 

plate displacement. US: horizontal displacement, UN: vertical displacement, FS: 

shearing load, FN: normal load. 

Table 4 Absolute values of maximal and mean volumetric strains. 

 

 

Material parameters µ (MPa) α C10 (MPa) C20 (MPa) C30 (MPa) 

Adipose tissues 0.003 6.2 - - - 

Skin - - 0.265 1.923 - 

Tendon - - 9.654 1.897 102 7.895 104 

Muscle - - 0.005 0.069 1.967 

Table 1: Material properties of the soft tissues obtained from literature experimental data. 

 

 

Poisson ratio 0.4999 0.4950 0.4900 0.4700 0.4500 

Bulk modulus (MPa) 17.00 0.34 0.17 0.06 0.03 

Bulk-to-shear ratio 5000 100 50 16 10 

Compressibility 

Compressible 

 

Nearly-incompressible 

Table 2: Values of Poisson ratio and equivalent bulk modulus and bulk-to-shear ratio. 
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Loading LOAD 1 LOAD 2 LOAD 3 LOAD 4 

Force FS FN FS FN FS FN FS FN 

Experimental measures (N) 0 140 0 15 45 15 12 15 

Displacement US UN US UN US UN US UN 

Experimental measures (mm) - 8.3 - 5.5 6.7 5.5 4.1 5.5 

FEA, 𝛎𝛎 = 0.4500 - 13.4 - 7.0 5.4 6.6 1.6 6.9 

FEA, 𝛎𝛎 = 0.4700 - 12.7 - 6.9 5.2 6.6 1.6 6.8 

FEA, 𝛎𝛎 = 0.4900 - 11.0 - 6.6 4.9 6.3 1.5 6.6 

FEA, 𝛎𝛎 = 0.4950 - 10.2 - 6.6 4.8 6.3 1.5 6.5 

FEA, 𝛎𝛎 = 0.4999 - 9.3 - 6.6 4.6 6.3 1.4 6.5 

Table 3: Normal and shearing loads of all studied configurations and measured and computed plate displacement. US: 
horizontal displacement, UN: vertical displacement, FS: shearing load, FN: normal load. 

 

 

Loads LOAD 1 LOAD 2 LOAD 3 LOAD 4 

Strains (%) Max Mean Max Mean Max Mean Max Mean 

FE model, 𝛎𝛎 = 0.4500 76 7 35 1 54 3 34 1 

FE model, 𝛎𝛎 = 0.4700 72 6 35 1 50 2 34 1 

FE model, 𝛎𝛎 = 0.4900 60 3 35 1 41 2 34 1 

FE model, 𝛎𝛎 = 0.4950 58 3 36 1 38 2 35 1 

FE model, 𝛎𝛎 = 0.4999 60 3 36 1 36 2 35 1 

Table 4: Absolute values of maximal and mean volumetric strains. 
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